Com

Arthur Hoskey, Ph.D.
Farmingdale State College
Computer Systems Department

syntactic analysis)

cture

© 2023 Arthur Hoskey. All
rights reserved.

Parsing - The process of constructing a
derivation from a specific input sentence.

Taken from Engineering a Compiler 2" edition by
Cooper and Torczon, 2012.

= o= —
— N e -_— S — — — —

Syntatic Analysis - Check if the source code conforms to
the rules of the language.

The rules of the language are defined using a context-free
grammar.

- Parser - The parser takes a stream of tokens as input and
produces an abstract syntax tree.

- The parser's input stream of tokens is generated by the
scanner during the lexical analysis phase.

Abstract Syntax Tree
(Intermediate Representation)

Stream of
Tokens

=
1)
=
(/)
(v
)

amples...

ree Exampl

© 2023 Arthur Hoskey. All
rights reserved.

Productions Terminals: Id, 5SS
s i — EXp gl;)ar::?'ra\mmals:A, Exp, Op
Exp 2 Exp Op id | id
Op>+|-1*1[/

Parse the following: w=x+y -2z

Terminals: id, =, +, -,
Nonterminals: A, Exp,

Opid | id Start: A

Example 1

—

- Productions Terminals: id, =, +, -, *,/
A > id = Exp Nonterminals: A, Exp, Op
Exp = Exp Op id | id Start: A

BE | - x|/

Parse the following: w=x +y -z

A-2>id=Exp Exp-> Exp Op id Exp 2Exp Op id

B
1)
o
9
54
5
I
ol
{J)
-
(o
|g

- Productions Terminals: id, =, +, -, %,/
A > id = Exp Nonterminals: A, Exp, Op
Exp > Exp Op id | id Start: A

B | - | <]/
Parse the following: w=x +y -z

Exp->id Op=>+

- Productions Terminals: id, =, +, -, *, /
A > id = Exp Nonterminals: A, Exp, Op
Exp > Exp Op id | id Start: A
B | - | <]/
Parse the following: w=x +y -z
Variables w, X, y, z will respectively be
associated with the id nodes

x+y will be evaluated first.

z will be subtracted from

the result of x+y because
of the tree structure.

Farsing Exam

e the following: w=x+vy * z

1

Multiply (*)
here instead
of subtract (-)

© 2023 Arthur Hoskey. All

rights reserved.

—

following: w=x +y * z

with A

-_—q

- Productions

A - id = Exp

Exp > Exp Op id | id

B | - | <]/

Parse the following: w =x +y * z

A->id=Exp; Exp-> Exp Op id Exp 2>Exp Op id

"o
1)
q
@
=
5
I
>l
{))
=
o\
N

f 3

- Productions

A - id = Exp

Exp > Exp Op id | id

o [- x|/

Parse the following: w =x +y * z

Exp->id Op=>+

. PFQdUCtiOHS Having + and * defined at the same
A - id = Exp level in the grammar means they

P O 1 |1 / have the same precedence
Op>+|-|*]|/

Parse the following: w =x +y * z

Variables w, x, y, z will respectively be
associated with the id nodes

ERROR

x+y will STILL be evaluated
first. This does not follow the

normal order of operations.
This is incorrect because z will
be multiplied with the result of

x+y (because of the tree
structure). Need a grammar
that expresses the correct
precedence.

. N - - -~ ™~ ~ » a - - - I"‘b ‘ '
Farsing Example 2 - Observations

Productions

A = id = Exp This grammar gives
Exp 2> Exp + Term | Exp — Term | Term higher precedence to *

Term 2> Term * Fact | Term / Fact | Fact and /.
Fact 2 id | num

Parse the following: w=x +y * z Operations that are
deeper in the parse
tree have higher
precedence.

+ Term | Exp — Term | Term
erm * Fact | Term / Fact | Fact
d | num

e following: w=x+vy * z

Example 3

—

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact 2 id | num

Parse the following: w =x +y * z

A=2>1d=Exp; Exp-=> Exp + Term Exp=>Term

B
1)
o
1
54
5
I
ol
{J)
=
(o
G

- Productions

A - id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term > Term * Fact | Term / Fact | Fact
Fact 2 id | num

Parse the following: w = x +y * z

Term=>Fact Fact->id

- Productions

A - id = Exp

Exp 2 Exp + Term | Exp — Term | Term

Term > Term * Fact | Term / Fact | Fact

Fact > id | num

Parse the following: w = x +y * z Term->Fact

i\ Term - Term*Fact

f 3

- Productions

A - id = Exp

Exp > Exp + Term | Exp — Term | Term

Term > Term * Fact | Term / Fact | Fact

Fact > id | num

Parse the following: w = x +y * z Fact->id

Fact->id

- Productions
A > id = Exp *And / are deeper in

Exp > Exp + Term | Exp - Term | Term / the parse tree
Term > Term * Fact | Term / Fact | Fact compared to + and -
Fact 2 id | num

Parse the following: w =x +y * z

Variables w, x, y, z will respectively be
associated with the id nodes

1 Y*z will be evaluated
1 first. x will be added to
: the result of y*z

1 because of the tree

: structure.

I
|

This is because the +
' operator needs a value

for its rhs (it must wait
|for the value from the *)

pservations

o
1)
I__L
é
-
(=
I
>
&)
.
(®
(J\)
|
(J
/)

Productions
A - id = Exp
Exp 2> Exp + Term | Exp — Term | Term
Term 2> Term * Fact | Term / Fact | Fact

Add parenthesis to the

Fact > id | num | (Exp) €
Parse the following: w = (x +y) * z

grammar to create
higher precedence for +
and —when necessary.

Adding the parenthesis
at a deeper level in the
grammar compared to
Exp and Term gives the
parenthesis higher
precedence.

+ Term | Exp — Term | Term
erm * Fact | Term / Fact | Fact
d| num | (Exp)

he following: w = (x +y) *z

rt with A

_——q

Example 4

—

- Productions
A > id = Exp
Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)
Parse the following: w = (x +y) * z
A->id=Exp: Exp-> Term Term=->Term*Fact

(x+y)*z is
the Term

(X+y) is zis the
the Term Fact

- Productions

A - id = Exp

Exp 2 Exp + Term | Exp — Term | Term

Term = Term * Fact | Term / Fact | Fact

Fact > id | num | (Exp)

Parse the following: w = (x + y) * z Fact-=>(Exp)

A Term=->Fact

4

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

Exp—>Exp+Term

Exp->Term

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

Term=>Fact

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

Fact=>id

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

-
'-E
1)
l__L
éa
=
(&)
|—l/l
ol
())
(-

Term=>Fact
A

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

-
'-E
1)
l__L
éa
=
(&)
|—l/l
ol
())
(-

Fact->id
A

- Productions

A > id = Exp

Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

-
'-E
1)
l__L
éa
=
(&)
|—l/l
ol
())
(-

Fact=>id

_ Fact->id
- Productions

A > id = Exp A
Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact > id | num | (Exp)

Parse the following: w = (x +y) * z

Variables w, x, y, z will respectively be
associated with the id nodes

(x+y) will be evaluated first. z will be
multiplied by the result of (x+y)
because of the tree structure. The *
operator must wait for its lhs value to
be computed.

LF’)@LVSUUUQ\ EXampie

Left recursion - The first symbol of the rhs is the same as
the |hs nonterminal.

For example:

A-> Ay |z

1

Left recursion because
the Ihs symbol A is the
first symbol on the rhs

the following: zyyy

rsive Gramm

© 2023 Arthur Hoskey. All
rights reserved.

- Productions
A->Ay |z

- Parse the following: zyyy

Start with A A>Ay A>Ay

[|

Right recursion - The last symbol of the rhs is the same
as the Ihs nonterminal.

For example:

A > zB
B> VB |«

\

Right recursion
because the Ihs symbol
B is the last symbol on

the rhs

€

e the following: zyyy

ursive Gram

© 2023 Arthur Hoskey. All
rights reserved.

- Productions
A > zB
B->yB| ¢

- Parse the following: zyyy
Start with A A->zB B->yB B->yB

-— e = = o

mmiinarnr

{JJ

= oy | - -
Right Recursive Gr

(1) grammars...

mmar

© 2023 Arthur Hoskey. All
rights reserved.

LL(1)

LL(1) is a top-down parsing technique. We begin with the
start symbol and apply substitutions.

First L in LL(1). The first L means to process the input from
left to right.

Second L in LL(1). The second L stands for a leftmost
derivation (this means always expand the leftmost
nonterminal).

The 1 in LL(1). The 1 means there is a 1 symbol
lookahead.

LL(1) grammars are only able to parse a subset of all
context-free grammars.

Requirements for Parsing LL(1)

LL(1) parsing requires that when we are doing a
substitution(expanding a nonterminal), the choice of
production to use is unambiguous.

When applying a substitution for a nonterminal, there
should only be one possible substitution given one token of
lookahead.

For example, assume we are expanding nonterminal B in
the following grammar and the lookahead is 'c'. The choice
of which production to use is unambiguous.

R BV The only valid substitution is t
B S cs < eon_yval_su stitution is ouse
B S dz B=>c since c is the lookahead. This

grammar is valid for LL(1) parsing.

Requirements for Parsing LL(1)

Assume the following grammar.
A 2> Bw
B > sC
B> sz
C>vy

Question

If we are expanding nonterminal B and the lookahead is 's’,
Is this valid when using LL(1) parsing on the grammar
above?

Requirements for Parsing LL(1)

Assume the following grammar.

A > Bw

B > sC Ambiguous. If we are expanding B and the

B S sz lookahead is 's', we do NOT know which production

C>y to use. It is ambiguous (both production start with
's'). This grammar is not valid for LL(1) parsing.

Question

If we are expanding nonterminal B and the lookahead is 's’,
is this valid when using LL(1) parsing on the grammar
above?

Answer
No

v m ~ —_ 0™ -~ o~ - — " - — " - - — » — . P— - — ~ \

_F_Cv AR ~1RATIRACT [, I i 8§ 1 —

Requirements for Parsing LL(1)

The first+ sets of productions for a given nonterminal must
be disjoint.

In the following grammar the first+ sets for B's productions
are not disjoint (they both include s).

A > Bw

B > sC ¢ First+ sets for There is no way to know
B> sz B right sides which substitution to
Co>vy are not disjoint apply since s is in both

/ first+ sets!!!

First+(B>sC) = { s }
First+(B>sD) = { s }

Requirements for Parsing LL(1)

Assume the following grammar.
A 2> Bw
B> Cs
B - sz
C>vy
C->¢

Question
Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

Assume the following grammar.

A > Bw C can disappear in this production because of C2E€.
B> Cs €— sincecCcan disappear s is in the First+ of B>Cs.

B > sz Note:First(C)={y, €}
C>vy
CS ¢ First+(B>Cs) ={y, &, s}

First+(B>sz)={s}

Question
Are the First+ sets of the productions for B disjoint?

Answer

No. The First+ sets of B>Cs and B- sD intersect (they
are not disjoint). This grammar is NOT LL(1).

™

-

\
~ ~ = 4N -~ \

J —
_-__, N s § = . 1 B B A B B . 5 = - S . —

Requirements for Parsing LL(1)

Assume the following grammar.
A - Bs
B->C
B - sz
C>vy
C->¢

Question
Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

Assume the following grammar.

A > Bs C can disappear in this production because of C>¢.

B> C €<— Since the right side of this production can

B - sz disappear, we must include members of Follow(B)

Coy in First+(B->C).

B - Note:First(C)={y, €} and Follow(B)={s}.
First+(B->C) = First(C) + Follow(B) = {y, €, s}

First+(B>sz) = {s}
Question

Are the First+ sets of the productions for B disjoint?

Answer

No. The First+ sets of B>C and B> sz intersect (they
are not disjoint). This grammar is NOT LL(1).

_F_Cv AR ~1RATIRACT [, I i 8§ 1 —

i\ M e A -~ o~

Requirements for Parsing LL(1)

Assume the following grammar.
A 2> Bw
B->C
B - sz
C>vy
C->¢

Question
Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

Assume the following grammar.

A 2> Bw Follow(B) is in First+(B->C) since C->=«.

e C €< Note: Follow(B)={w}.

B - sz First+(B->C) = First(C) + Follow(B) = {y, € ,w}

S v First+(B->sz) = {s}

> € The C productions are also valid:
First+(C-=2y) = {y}

Question First+(C->¢€) = {¢} + Follow(C) = {&} + Follow(B) = {w, €}

Are the First+ sets of the productions for B disjoint?

Answer

Yes. The First+ sets of B>C and B> sz are disjoint.
This grammar is LL(1) because all productions for each
nonterminal have disjoint First+ sets.

- —
~ ~ o~ PR ~ — . - - . - —~ . — -

< 5 .
_-__,’_,4 s = 1 B B S e . B -l S (S —

Transforming Grammars to LL(1)

You can try and transform a grammar to LL(1) using the
following techniques:

Change to right recursive.

Use left factoring

Every context free grammar is not LL(1), so these
techniques are not guaranteed to work.

Predictive Parser

A predictive parser is able to determine the correct
production to use given a small number of lookahead
symbols.

The right recursive form of a grammar might work for
LL(1).

Converting to right recursive form will allow you to use a
predictive parser.

If a grammar is LL(1) then you can build a recursive
descent parser for it. Recursive descent parsing means
parsing from the start symbol down (top-down parsing).

Convert the Expression Grammar to Right Recursive

Original Expression Grammar (without the assignment)
Exp 2 Exp + Term | Exp — Term | Term
Term - Term * Fact | Term / Fact | Fact
Fact 2> id | num | (Exp)

Right Recursive Expression Grammar
Exp 2 Term ExpEnd
EXpEnd -2 + Term ExpEnd | - Term ExpEnd | €
Term - Fact TermEnd
TermEnd = * Fact TermEnd | / Fact TermEnd | €
Fact 2 id | num | (Exp)

right recursive grammars...

ursive Gram

© 2023 Arthur Hoskey. All
rights reserved.

Productions (Exp is start symbol)

Exp > Term ExpEnd
EXpEnd 2> + Term ExpEnd | - Term ExpEnd | €

Term > Fact TermEnd
TermEnd > * Fact TermEnd | / Fact TermEnd | €

Fact 2 id | num | (Exp)
Parse the following: a+2*b

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example

ExpEnd > + Term ExpEnd | - Term ExpEnd | ¢ Part 1
Term - Fact TermEnd (continued on
TermEnd > * Fact TermEnd | / Fact TermEnd | € next slide)

Fact 2 id | num | (Exp)
« Parse the following: a+2*b

Start with Exp Exp->Term ExpEnd Term->Fact TermEnd

= e e o =y

L’_\- Eﬂ_lﬁ r—"‘—"x Y ~ 1 a a a P —_
ULJ L RECUISIVE Gralin 1al

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example

ExpEnd > + Term ExpEnd | - Term ExpEnd | ¢ Part 2
Term - Fact TermEnd (continued on
TermEnd > * Fact TermEnd | / Fact TermEnd | € next slide)

Fact 2 id | num | (Exp)
« Parse the following: a+2*b

Fact->id TermEnd-> ¢

TermEnd

» = - JT1v. r_ = pe ™ e & Be
Right Recursive Grammait

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example

ExpEnd > + Term ExpEnd | - Term ExpEnd | € P_art 3
Term > Fact TermEnd (continued on
TermEnd > * Fact TermEnd | / Fact TermEnd | € next slide)

Fact > id | num | (Exp)
« Parse the following: a+2*b

ExpEnd-> + Term ExpEnd

U }m 2/ -7 o — "‘- Y 62 /:\ = FN N = L'»—
L_ L | AN\ "I"I- A A-BIN-111010 L -

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example

ExpEnd > + Term ExpEnd | - Term ExpEnd | € P_art 4
Term > Fact TermEnd (continued on
TermEnd > * Fact TermEnd | / Fact TermEnd | € next slide)

Fact > id | num | (Exp)
« Parse the following: a+2*b

Term=>» Fact TermEnd

TermEnd

s manson M pam ps - B
Right Recursive Grammait

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example

ExpEnd > + Term ExpEnd | - Term ExpEnd | € Part 5
Term > Fact TermEnd (continued on
TermEnd > * Fact TermEnd | / Fact TermEnd | € next slide)

Fact > id | num | (Exp)
« Parse the following: a+2*b

Fact-> num

TermEnd

TermEnd

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example
ExpEnd > + Term ExpEnd | - Term ExpEnd | € Part 6
Term - Fact TermEnd (continued on

TermEnd 2> * Fact TermEnd | / Fact TermEnd | €
Fact > id | num | (Exp)

« Parse the following: a+2*b
TermEnd=> * Fact TermEnd

next slide)

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example
ExpEnd > + Term ExpEnd | - Term ExpEnd | € Part 7
Term - Fact TermEnd (continued on

TermEnd 2> * Fact TermEnd | / Fact TermEnd | €
Fact > id | num | (Exp)
« Parse the following: a+2*b

next slide)

Fact=> id

TermEnd

L
b

Right Recursive Grammar

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example
ExpEnd > + Term ExpEnd | - Term ExpEnd | € Part 8
Term - Fact TermEnd (continued on

TermEnd 2> * Fact TermEnd | / Fact TermEnd | €
Fact > id | num | (Exp)

« Parse the following: a+2*b
TermEnd=> €

next slide)

TermEnd

(B

ar

- Productions (Exp is start symbol)

Exp > Term ExpEnd Parse Example
ExpEnd > + Term ExpEnd | - Term ExpEnd | € Part 9
Term -> Fact TermEnd

TermEnd > * Fact TermEnd | / Fact TermEnd | € FINISHED!

Fact > id | num | (Exp)

« Parse the following: a+2*b
EXpEnd-> €

TermEnd

left factoring...

ring

© 2023 Arthur Hoskey. All
rights reserved.

Requirement for Parsing LL(1) - Revisited

Assume the following grammar.
A - cd
A > ce
A > cf

Question
Are the First+ sets of the productions for nonterminal A disjoint?

Requirement for Parsing LL(1) - Revisited

Assume the following grammar.

e First+ sets are NOT disjoint (grammar is not LL(1))
A > ce :
First+(A-> cd) ={c}
A > cf :
First+(A->ce) = {c}
First+(A->cf) = {c}
Question

Are the First+ sets of the productions for nonterminal A disjoint?

Answer
No. They all contain c. This grammar is not LL(1).

We can transform these productions so that they are disjoint
though!

~]

y -~ — S - - . — . = = . o
_r__,‘_/ —a = = —_ = “ : — - =N —

Left Factoring Rule Greek symbols:

a is alpha
Assume the following grammar. Bis beta
A>aB; |aB; ...l aB, | Y1l Y2l Vg y is gamma

To left factor A move the symbols following a into new
productions.

Grammar after left factoring.

A>aB |y, |yl Vnq a originally appeared in multiple A
BE B || By ~ productions but it has now been
factored out into one A production. The
Yy productions in A remain unchanged
because they do not contain a.

Taken from Engineering a Compiler 2"d edition by Cooper and
Torczon, 2012.

(o — - —
~ ™ r~ S =k o - — — -
— — ~N —
I— B 5 S SS9l S8 S AN " LA™

Left Factoring
Assume the following grammar.
A > cd
A - ce
A > cf

Question
What does the grammar look like after left factoring nonterminal A's
productions?

Left Factoring
Assume the following grammar.

A > cd ' i
: Leave c in production A and

A > ce move d, e, and f into the new B
A > cf productions
Question

What does the grammar look like after left factoring nonterminal A's
productions?

Answer

A > cB The First+ sets are
B->d now disjoint
B->e

B->f

Left Factoring
Assume the following grammar.
A > cd
A - ce
A > X
A2y

Question

What does the grammar look like after left factoring nonterminal A's
productions?

Left Factoring
Assume the following grammar.

e c Leave c in production A and
A - ce .

S move d, e, and f into the new B
Ay productions
Question

What does the grammar look like after left factoring nonterminal A's
productions?

When applying the left factoring rule:
Answer

cis a
A > cB diSBl
A > X .
Ay STES
B->d X1SY;

B->e yisy,

e e
e - — =k o o - - —

~
’_‘_C__ I SISl NS

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Parsing
	Slide 4: Syntactic Analysis
	Slide 5: Parser
	Slide 6: Parsing Tree Examples
	Slide 7: Parsing Example 1
	Slide 8: Parsing Example 1
	Slide 9: Parsing Example 1
	Slide 10: Parsing Example 1
	Slide 11: Parsing Example 1 - Observations
	Slide 12: Parsing Example 2
	Slide 13: Parsing Example 2
	Slide 14: Parsing Example 2
	Slide 15: Parsing Example 2
	Slide 16: Parsing Example 2 - Observations
	Slide 17: Grammar for Correct Expression Precedence
	Slide 18: Parsing Example 3
	Slide 19: Parsing Example 3
	Slide 20: Parsing Example 3
	Slide 21: Parsing Example 3
	Slide 22: Parsing Example 3
	Slide 23: Parsing Example 3 - Observations
	Slide 24: Add Parenthesis to the Expression Grammar
	Slide 25: Parsing Example 4
	Slide 26: Parsing Example 4
	Slide 27: Parsing Example 4
	Slide 28: Parsing Example 4
	Slide 29: Parsing Example 4
	Slide 30: Parsing Example 4
	Slide 31: Parsing Example 4
	Slide 32: Parsing Example 4
	Slide 33: Parsing Example 4
	Slide 34: Parsing Example 4 - Observations
	Slide 35: Left Recursion
	Slide 36: Left Recursive Grammar
	Slide 37: Left Recursive Grammar
	Slide 38: Right Recursion
	Slide 39: Right Recursive Grammar
	Slide 40: Right Recursive Grammar
	Slide 41: LL(1) Grammar
	Slide 42: LL(1)
	Slide 43: Requirements for Parsing LL(1)
	Slide 44: Requirements for Parsing LL(1)
	Slide 45: Requirements for Parsing LL(1)
	Slide 46: Requirements for Parsing LL(1)
	Slide 47: Requirements for Parsing LL(1)
	Slide 48: Requirements for Parsing LL(1)
	Slide 49: Requirements for Parsing LL(1)
	Slide 50: Requirements for Parsing LL(1)
	Slide 51: Requirements for Parsing LL(1)
	Slide 52: Requirements for Parsing LL(1)
	Slide 53: Transforming Grammars to LL(1)
	Slide 54: Predictive Parser
	Slide 55: Right Recursive Expression Grammar
	Slide 56: Right Recursive Grammar
	Slide 57: Right Recursive Grammar
	Slide 58: Right Recursive Grammar
	Slide 59: Right Recursive Grammar
	Slide 60: Right Recursive Grammar
	Slide 61: Right Recursive Grammar
	Slide 62: Right Recursive Grammar
	Slide 63: Right Recursive Grammar
	Slide 64: Right Recursive Grammar
	Slide 65: Right Recursive Grammar
	Slide 66: Right Recursive Grammar
	Slide 67: Left Factoring
	Slide 68: Requirements for Parsing LL(1) - Revisited
	Slide 69: Requirements for Parsing LL(1) - Revisited
	Slide 70: Left Factoring Rule
	Slide 71: Left Factoring
	Slide 72: Left Factoring
	Slide 73: Left Factoring
	Slide 74: Left Factoring
	Slide 75: End of Slides

