Compilers

Arthur Hoskey, Ph.D. Farmingdale State College Computer Systems Department

Parsing (syntactic analysis)

 Parsing - The process of constructing a derivation from a specific input sentence.

 Taken from Engineering a Compiler 2nd edition by Cooper and Torczon, 2012.

- Syntatic Analysis Check if the source code conforms to the rules of the language.
- The rules of the language are defined using a context-free grammar.

- Parser The parser takes a stream of tokens as input and produces an abstract syntax tree.
- The parser's input stream of tokens is generated by the scanner during the lexical analysis phase.

• Parse tree examples...

Parsing Tree Examples

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp Op id \mid id$ $Op \rightarrow + \mid - \mid * \mid /$ Terminals: id, =, +, -, *, / Nonterminals: A, Exp, Op Start: A

Parse the following: w = x + y - z

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp Op id | id$ $Op \rightarrow + | - | * | /$ Parse the following: w = x + y - z Terminals: id, =, +, -, *, / Nonterminals: A, Exp, Op Start: A

Start with A

Terminals: id, =, +, -, *, / Nonterminals: A, Exp, Op Start: A

Exp→id

Op→-

Op→+

Terminals: id, =, +, -, *, / Nonterminals: A, Exp, Op Start: A

Variables w, x, y, z will respectively be associated with the id nodes

x+y will be evaluated first.
z will be subtracted from the result of x+y because of the tree structure.

Parsing Example 1 - Observations

Parsing Example 2

Productions
A → id = Exp
Exp → Exp Op id | id
Op → + | - | * | /
Parse the following: w = x + y * z

Start with A

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp Op id | id$ $Op \rightarrow + | - | * | /$

Having + and * defined at the same level in the grammar means they have the same precedence

Parse the following: $\mathbf{w} = \mathbf{x} + \mathbf{y} * \mathbf{z}$

Variables w, x, y, z will respectively be associated with the id nodes

ERROR

x+y will STILL be evaluated first. This does not follow the normal order of operations.
This is incorrect because z will be multiplied with the result of x+y (because of the tree structure). Need a grammar that expresses the correct precedence.

Parsing Example 2 - Observations

Productions
A → id = Exp
Exp → Exp + Term | Exp - Term | Term
Term → Term * Fact | Term / Fact | Fact
Fact → id | num

• Parse the following: w = x + y * z

This grammar gives higher precedence to * and /.

Operations that are deeper in the parse tree have higher precedence.

Grammar for Correct Expression Precedence

Productions
A → id = Exp
Exp → Exp + Term | Exp - Term | Term
Term → Term * Fact | Term / Fact | Fact
Fact → id | num
Parse the following: w = x + y * z

Productions A → id = Exp Exp → Exp + Term | Exp - Term | Term Term → Term * Fact | Term / Fact | Fact Fact → id | num Parse the following: w = x + y * z

Productions A → id = Exp Exp → Exp + Term | Exp - Term | Term Term → Term * Fact | Term / Fact | Fact Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

Add parenthesis to the grammar to create higher precedence for + and – when necessary.

Adding the parenthesis at a deeper level in the grammar compared to Exp and Term gives the parenthesis higher precedence.

Add Parenthesis to the Expression Grammar

```
Productions
A → id = Exp
Exp → Exp + Term | Exp - Term | Term
Term → Term * Fact | Term / Fact | Fact
Fact → id | num | (Exp )
Parse the following: w = (x + y) * z
```

Start with A

Productions
A → id = Exp
Exp → Exp + Term | Exp - Term | Term
Term → Term * Fact | Term / Fact | Fact
Fact → id | num | (Exp)
Parse the following: w = (x + y) * z

Fact→(Exp)

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ $Term \rightarrow Term * Fact | Term / Fact | Fact$ $Fact \rightarrow id | num | (Exp)$ Parse the following: w = (x + y) * z

Productions • $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ Term → Term * Fact | Term / Fact | Fact Fact \rightarrow id | num | (Exp) Parse the following: w = (x + y) * z

Productions • $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ Term → Term * Fact | Term / Fact | Fact Fact \rightarrow id | num | (Exp) Parse the following: w = (x + y) * z

Productions • $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ Term → Term * Fact | Term / Fact | Fact Fact \rightarrow id | num | (Exp) Parse the following: w = (x + y) * z

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ $Term \rightarrow Term * Fact | Term / Fact | Fact$ $Fact \rightarrow id | num | (Exp)$ Parse the following: w = (x + y) * z

• Productions $A \rightarrow id = Exp$ $Exp \rightarrow Exp + Term | Exp - Term | Term$ $Term \rightarrow Term * Fact | Term / Fact | Fact$ $Fact \rightarrow id | num | (Exp)$ Parse the following: w = (x + y) * z

Variables w, x, y, z will respectively be associated with the id nodes

 (x+y) will be evaluated first. z will be multiplied by the result of (x+y) because of the tree structure. The *
 operator must wait for its lhs value to be computed.

Parsing Example 4 - Observations

- Left recursion The first symbol of the rhs is the same as the lhs nonterminal.
- For example:
- A → Ay | z Left recursion because the lhs symbol A is the first symbol on the rhs

- Productions
 A → Ay | z
- Parse the following: zyyy

Left Recursive Grammar
Productions
 A → Ay | z

• Parse the following: zyyy

- Right recursion The last symbol of the rhs is the same as the lhs nonterminal.
- For example:

A → zB B → yB | ε N Right recursion because the lhs symbol B is the last symbol on the rhs

Right Recursion

- Productions A \rightarrow zB B \rightarrow yB | ϵ
- Parse the following: zyyy

• Now on to LL(1) grammars...

<u>LL(1)</u>

- LL(1) is a top-down parsing technique. We begin with the start symbol and apply substitutions.
- First L in LL(1). The first L means to process the input from left to right.
- Second L in LL(1). The second L stands for a leftmost derivation (this means always expand the leftmost nonterminal).
- The 1 in LL(1). The 1 means there is a 1 symbol lookahead.
- LL(1) grammars are only able to parse a subset of all context-free grammars.

- LL(1) parsing requires that when we are doing a substitution(expanding a nonterminal), the choice of production to use is unambiguous.
- When applying a substitution for a nonterminal, there should only be one possible substitution given one token of lookahead.
- For example, assume we are expanding nonterminal B in the following grammar and the lookahead is 'c'. The choice of which production to use is unambiguous.

- Assume the following grammar.
- $A \rightarrow Bw$
- $B \rightarrow sC$
- $B \rightarrow sz$
- $C \rightarrow y$

Question

If we are expanding nonterminal B and the lookahead is 's', is this valid when using LL(1) parsing on the grammar above?

Requirements for Parsing LL(1)

- Assume the following grammar.
- $A \rightarrow Bw$
- $B \rightarrow sC$ $B \rightarrow sz$

 $C \rightarrow y$

Ambiguous. If we are expanding B and the lookahead is 's', we do NOT know which production to use. It is ambiguous (both production start with 's'). This grammar is not valid for LL(1) parsing.

Question

If we are expanding nonterminal B and the lookahead is 's', is this valid when using LL(1) parsing on the grammar above?

<u>Answer</u>

No

Requirements for Parsing LL(1)

- The first+ sets of productions for a given nonterminal must be disjoint.
- In the following grammar the first+ sets for B's productions are not disjoint (they both include s).

There is no way to know which substitution to apply since s is in both first+ sets!!!

First+($B \rightarrow sC$) = { s } First+($B \rightarrow sD$) = { s }

Requirements for Parsing LL(1)

- Assume the following grammar.
- $A \rightarrow Bw$
- $B \rightarrow Cs$
- $B \rightarrow sz$
- $C \rightarrow y$
- $C \rightarrow \epsilon$

<u>Question</u> Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

<u>Question</u> Are the First+ sets of the productions for B disjoint?

<u>Answer</u>

No. The First+ sets of $B \rightarrow Cs$ and $B \rightarrow sD$ intersect (they are not disjoint). This grammar is NOT LL(1).

Requirements for Parsing LL

- Assume the following grammar.
- $A \rightarrow Bs$
- $B \rightarrow C$
- $B \rightarrow sz$
- $C \rightarrow y$
- $C \rightarrow \epsilon$

<u>Question</u> Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

- Assume the following grammar.
- $A \rightarrow Bs$ C can disappear in this production because of $C \rightarrow \epsilon$. $B \rightarrow C$ Since the right side of this production can
disappear, we must include members of Follow(B)
in First+($B \rightarrow C$).
Note:First(C)={y, ϵ } and Follow(B)={s}.

First+($B \rightarrow C$) = First(C) + Follow(B) = {y, ϵ , s} First+($B \rightarrow sz$) = {s}

Question

Are the First+ sets of the productions for B disjoint?

Answer

No. The First+ sets of $B \rightarrow C$ and $B \rightarrow sz$ intersect (they are not disjoint). This grammar is NOT LL(1).

Requirements for Parsing LL

- Assume the following grammar.
- $A \rightarrow Bw$
- $B \rightarrow C$
- $B \rightarrow sz$
- $C \rightarrow y$
- $C \rightarrow \epsilon$

<u>Question</u> Are the First+ sets of the productions for B disjoint?

Requirements for Parsing LL(1)

Answer

Yes. The First+ sets of $B \rightarrow C$ and $B \rightarrow sz$ are disjoint. This grammar is LL(1) because all productions for each nonterminal have disjoint First+ sets.

Requirements for Parsing LL(1)

Transforming Grammars to LL(1)

- You can try and transform a grammar to LL(1) using the following techniques:
 - Change to right recursive.
 - Use left factoring
- Every context free grammar is not LL(1), so these techniques are not guaranteed to work.

Predictive Parser

- A predictive parser is able to determine the correct production to use given a small number of lookahead symbols.
- The right recursive form of a grammar might work for LL(1).
- Converting to right recursive form will allow you to use a predictive parser.
- If a grammar is LL(1) then you can build a recursive descent parser for it. Recursive descent parsing means parsing from the start symbol down (top-down parsing).

Predictive Parser

Convert the Expression Grammar to Right Recursive

Original Expression Grammar (without the assignment)
 Exp → Exp + Term | Exp - Term | Term
 Term → Term * Fact | Term / Fact | Fact
 Fact → id | num | (Exp)

Right Recursive Expression Grammar
 Exp → Term ExpEnd
 ExpEnd → + Term ExpEnd | - Term ExpEnd | ε
 Term → Fact TermEnd
 TermEnd → * Fact TermEnd | / Fact TermEnd | ε
 Fact → id | num | (Exp)

Right Recursive Expression Grammar

Now on to right recursive grammars...

Right Recursive Grammar

```
Productions (Exp is start symbol)
Exp → Term ExpEnd
ExpEnd → + Term ExpEnd | - Term ExpEnd | ε
Term → Fact TermEnd
TermEnd → * Fact TermEnd | / Fact TermEnd | ε
Fact → id | num | (Exp )
Parse the following: a+2*b
```


Requirement for Parsing LL(1) - Revisited

- Assume the following grammar.
- $\mathsf{A} \rightarrow \mathsf{cd}$
- $A \rightarrow ce$
- $A \rightarrow cf$

<u>Question</u> Are the First+ sets of the productions for nonterminal A disjoint?

Requirements for Parsing LL(1) -Revisited

Requirement for Parsing LL(1) - Revisited

• Assume the following grammar.

 $A \rightarrow cd$ First+ sets are NOT disjoint (grammar is not LL(1)) $A \rightarrow ce$ First+($A \rightarrow cd$) = {c} $A \rightarrow cf$ First+($A \rightarrow ce$) = {c}First+($A \rightarrow cf$) = {c}

Question

Are the First+ sets of the productions for nonterminal A disjoint?

<u>Answer</u> No. They all contain c. This grammar is not LL(1).

We can transform these productions so that they are disjoint though! Requirements for Parsing LL(1) -Revisited

Left Factoring Rule

• Assume the following grammar. A $\rightarrow \alpha\beta_1 \mid \alpha\beta_2 \mid ... \mid \alpha\beta_n \mid \gamma_1 \mid \gamma_2 \mid ... \mid \gamma_n$ Greek symbols: α is alpha β is beta γ is gamma

- To left factor A move the symbols following a into new productions.
- Grammar after left factoring.
- $A \rightarrow \mathbf{aB} | \gamma_1 | \gamma_2 | ... | \gamma_n$ $B \rightarrow \beta_1 | \beta_2 | ... | \beta_n$

α originally appeared in multiple A productions but it has now been
 factored out into one A production. The γ productions in A remain unchanged because they do not contain α.

 Taken from Engineering a Compiler 2nd edition by Cooper and Torczon, 2012.

Left Factoring Rule

Left Factoring

• Assume the following grammar.

- $A \rightarrow cd$
- $A \rightarrow ce$
- $A \rightarrow cf$

Question

What does the grammar look like after left factoring nonterminal A's productions?

Left Factoring• Assume the following grammar. $A \rightarrow cd$ $A \rightarrow cd$ $A \rightarrow ce$ $A \rightarrow cf$ Leave c in production A and
move d, e, and f into the new B
productions

Question

What does the grammar look like after left factoring nonterminal A's productions?

Answer

- $A \rightarrow cB$ The First+ sets are $B \rightarrow d$ now disjoint
- $B \rightarrow d$ $B \rightarrow e$ $B \rightarrow f$

Left Factoring
Left Factoring

• Assume the following grammar.

- $A \rightarrow cd$
- $A \rightarrow ce$
- $\mathsf{A} \to \mathsf{x}$

 $\mathsf{A} \to \mathsf{y}$

Question

What does the grammar look like after left factoring nonterminal A's productions?

© 2023 Arthur Hoskey. All rights reserved.

Left Factoring

- Assume the following grammar.
- $A \rightarrow cd$ $A \rightarrow ce$

 $A \rightarrow x$

 $A \rightarrow y$

Leave c in production A and move d, e, and f into the new B productions

Question

What does the grammar look like after left factoring nonterminal A's productions?

When applying the left factoring rule:

Answer	c is a
$A \rightarrow cB$	
$A \rightarrow x$	a is p ₁
$\Delta \rightarrow \gamma$	e is β_2
	x is y ₁
	v is v
$P \rightarrow G$	y 10 y 2

© 2023 Arthur Hoskey. All rights reserved.