
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Parsing (syntactic analysis)

© 2023 Arthur Hoskey. All
rights reserved.

Parsing

 Parsing - The process of constructing a
derivation from a specific input sentence.

 Taken from Engineering a Compiler 2nd edition by
Cooper and Torczon, 2012.

© 2023 Arthur Hoskey. All
rights reserved.

Syntactic Analysis

 Syntatic Analysis – Check if the source code conforms to
the rules of the language.

 The rules of the language are defined using a context-free
grammar.

© 2023 Arthur Hoskey. All
rights reserved.

Parser

 Parser - The parser takes a stream of tokens as input and
produces an abstract syntax tree.

 The parser's input stream of tokens is generated by the
scanner during the lexical analysis phase.

© 2023 Arthur Hoskey. All
rights reserved.

Parser
Stream of

Tokens

=

x +

w *

y z

Abstract Syntax Tree

(Intermediate Representation)

Parsing Tree Examples

 Parse tree examples…

© 2023 Arthur Hoskey. All
rights reserved.

Parsing Example 1

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

 Parse the following: w = x + y – z

© 2023 Arthur Hoskey. All
rights reserved.

Terminals: id, =, +, -, *, /

Nonterminals: A, Exp, Op

Start: A

Parsing Example 1

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y – z

A

Start with A

Terminals: id, =, +, -, *, /

Nonterminals: A, Exp, Op

Start: A

Parsing Example 1

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y – z

A

id = Exp

A→id=Exp Exp→ Exp Op id Exp →Exp Op id

A

id = Exp

Exp Op id

A

id = Exp

Exp Op id

Exp Op id

Terminals: id, =, +, -, *, /

Nonterminals: A, Exp, Op

Start: A

Parsing Example 1

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y – z

Exp→id

A

id = Exp

Exp Op id

Exp Op id

id

Op→+

A

id = Exp

Exp Op id

Exp Op id

id +

Op→-

A

id = Exp

Exp Op id

Exp Op id

id +

-

Terminals: id, =, +, -, *, /

Nonterminals: A, Exp, Op

Start: A

DONE!

Parsing Example 1 - Observations

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y – z

w

A

id = Exp

Exp Op id

Exp Op id

id +

-

x

y

z

Variables w, x, y, z will respectively be

associated with the id nodes

x+y will be evaluated first.

z will be subtracted from

the result of x+y because

of the tree structure.

Terminals: id, =, +, -, *, /

Nonterminals: A, Exp, Op

Start: A

Parsing Example 2

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

 Parse the following: w = x + y * z

© 2023 Arthur Hoskey. All
rights reserved.

Multiply (*)

here instead

of subtract (-)

Parsing Example 2

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y * z

A

Start with A

Parsing Example 2

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y * z

A

id = Exp

A→id=Exp; Exp→ Exp Op id Exp →Exp Op id

A

id = Exp

Exp Op id

A

id = Exp

Exp Op id

Exp Op id

Parsing Example 2

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y * z

Exp→id

A

id = Exp

Exp Op id

Exp Op id

id

Op→+

A

id = Exp

Exp Op id

Exp Op id

id +

Op→-

A

id = Exp

Exp Op id

Exp Op id

id +

*

DONE!

Parsing Example 2 - Observations

 Productions

A → id = Exp

Exp → Exp Op id | id

Op → + | - | * | /

Parse the following: w = x + y * z

w

A

id = Exp

Exp Op id

Exp Op id

id +

*

x

y

z

Variables w, x, y, z will respectively be

associated with the id nodes

ERROR

x+y will STILL be evaluated

first. This does not follow the

normal order of operations.

This is incorrect because z will

be multiplied with the result of

x+y (because of the tree

structure). Need a grammar

that expresses the correct

precedence.

Having + and * defined at the same

level in the grammar means they

have the same precedence

Grammar for Correct Expression
Precedence

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

 Parse the following: w = x + y * z

© 2023 Arthur Hoskey. All
rights reserved.

This grammar gives

higher precedence to *

and /.

Operations that are

deeper in the parse

tree have higher

precedence.

Parsing Example 3

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

A

Start with A

Parsing Example 3

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

A

id = Exp

A→id=Exp; Exp→ Exp + Term Exp→Term

A

id = Exp

Exp + Term

A

id = Term

Exp + Term

Term

Parsing Example 3

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

Term→Fact

A

id = Exp

Exp + Term

Term

Fact

Fact→id

A

id = Exp

Exp + Term

Term

Fact

id

Parsing Example 3

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

Term→Term*FactA

id = Exp

Exp + Term

Term

Fact

id

Term * Fact

Term→Fact

A

id = Exp

Exp + Term

Term

Fact

id

Term * Fact

Fact

Parsing Example 3

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

Fact→idA

id = Exp

Exp + Term

Term

Fact

id

Term * Fact

Fact

id

Fact→id

A

id = Exp

Exp + Term

Term

Fact

id

Term * Fact

Fact

id

id

DONE!

Parsing Example 3 - Observations

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num

Parse the following: w = x + y * z

Variables w, x, y, z will respectively be

associated with the id nodes

y*z will be evaluated

first. x will be added to

the result of y*z

because of the tree

structure.

This is because the +

operator needs a value

for its rhs (it must wait

for the value from the *)

A

id = Exp

Exp + Term

Term

Fact

id

Term * Fact

Fact

id

id

w

x y

z

* And / are deeper in

the parse tree

compared to + and -

Add Parenthesis to the Expression
Grammar

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

 Parse the following: w = (x + y) * z

© 2023 Arthur Hoskey. All
rights reserved.

Add parenthesis to the

grammar to create

higher precedence for +

and – when necessary.

Adding the parenthesis

at a deeper level in the

grammar compared to

Exp and Term gives the

parenthesis higher

precedence.

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

Start with A

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

A→id=Exp; Exp→ Term Term→Term*Fact

A

id = Exp

Term

A

id = Exp

Term

Term * Fact
(x+y)*z is

the Term

(x+y) is

the Term
z is the

Fact

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

Term→Fact

Fact→(Exp)

A

id = Exp

Term

Term * Fact

(x+y) is

the Fact

z is the

Fact
Fact

A

id = Exp

Term

Term * Fact

Fact

Exp)(

x+y is

the Exp

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

Exp→Exp+Term
A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Exp→Term

Term

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Term→Fact

Term

Fact

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Fact→id

Term

Fact

id

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Term→Fact

Term

Fact

id

Fact

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Fact→id

Term

Fact

id

Fact

id

Parsing Example 4

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Fact→id

Term

Fact

id

Fact

id

id

DONE!

Parsing Example 4 - Observations

 Productions

A → id = Exp

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

Parse the following: w = (x + y) * z

A

id = Exp

Term

Term * Fact

Fact

Exp)(

Exp + Term

Fact→id

Term

Fact

id

Fact

id

id

Variables w, x, y, z will respectively be

associated with the id nodes

(x+y) will be evaluated first. z will be

multiplied by the result of (x+y)

because of the tree structure. The *

operator must wait for its lhs value to

be computed.

w

x

y

z

Left Recursion

 Left recursion – The first symbol of the rhs is the same as
the lhs nonterminal.

 For example:

A → Ay | z

© 2023 Arthur Hoskey. All
rights reserved.

Left recursion because

the lhs symbol A is the

first symbol on the rhs

Left Recursive Grammar

 Productions

A → Ay | z

 Parse the following: zyyy

© 2023 Arthur Hoskey. All
rights reserved.

Left Recursive Grammar

 Productions

A → Ay | z

 Parse the following: zyyy

© 2023 Arthur Hoskey. All
rights reserved.

A

Start with A A→Ay

A

yA

A→Ay

A

yA

yA

A→Ay

A

yA

yA

yA

A→z

A

yA

yA

yA

z

Right Recursion

 Right recursion – The last symbol of the rhs is the same
as the lhs nonterminal.

 For example:

A → zB

B → yB | ε

© 2023 Arthur Hoskey. All
rights reserved.

Right recursion

because the lhs symbol

B is the last symbol on

the rhs

Right Recursive Grammar

 Productions

A → zB

B → yB | ε

 Parse the following: zyyy

© 2023 Arthur Hoskey. All
rights reserved.

Right Recursive Grammar

 Productions

A → zB

B → yB | ε

 Parse the following: zyyy

© 2023 Arthur Hoskey. All
rights reserved.

A

A→zB

A

Bz

Start with A B→yB

A

Bz

By

B→yB

A

Bz

By

By

B→yB

A

Bz

By

By

By

B→ε

A

Bz

By

By

By

ε

LL(1) Grammar

 Now on to LL(1) grammars…

© 2023 Arthur Hoskey. All
rights reserved.

LL(1)

LL(1)

 LL(1) is a top-down parsing technique. We begin with the
start symbol and apply substitutions.

 First L in LL(1). The first L means to process the input from
left to right.

 Second L in LL(1). The second L stands for a leftmost
derivation (this means always expand the leftmost
nonterminal).

 The 1 in LL(1). The 1 means there is a 1 symbol
lookahead.

 LL(1) grammars are only able to parse a subset of all
context-free grammars.

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 LL(1) parsing requires that when we are doing a
substitution(expanding a nonterminal), the choice of
production to use is unambiguous.

 When applying a substitution for a nonterminal, there
should only be one possible substitution given one token of
lookahead.

 For example, assume we are expanding nonterminal B in
the following grammar and the lookahead is 'c'. The choice
of which production to use is unambiguous.

A → Bw

B → cs

B → dz

© 2023 Arthur Hoskey. All
rights reserved.

The only valid substitution is to use

B→c since c is the lookahead. This

grammar is valid for LL(1) parsing.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → sC

B → sz

C → y

Question

If we are expanding nonterminal B and the lookahead is 's',
is this valid when using LL(1) parsing on the grammar
above?

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → sC

B → sz

C → y

Question

If we are expanding nonterminal B and the lookahead is 's',
is this valid when using LL(1) parsing on the grammar
above?

Answer

No

© 2023 Arthur Hoskey. All
rights reserved.

Ambiguous. If we are expanding B and the

lookahead is 's', we do NOT know which production

to use. It is ambiguous (both production start with

's'). This grammar is not valid for LL(1) parsing.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 The first+ sets of productions for a given nonterminal must
be disjoint.

 In the following grammar the first+ sets for B's productions
are not disjoint (they both include s).

A → Bw

B → sC

B → sz

C → y

First+(B→sC) = { s }

First+(B→sD) = { s }

© 2023 Arthur Hoskey. All
rights reserved.

First+ sets for

B right sides

are not disjoint

There is no way to know

which substitution to

apply since s is in both

first+ sets!!!

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → Cs

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → Cs

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

Answer

No. The First+ sets of B→Cs and B→ sD intersect (they
are not disjoint). This grammar is NOT LL(1).

© 2023 Arthur Hoskey. All
rights reserved.

C can disappear in this production because of C→ε.

Since C can disappear s is in the First+ of B→Cs.

Note:First(C)={y, ε}

First+(B→Cs) = {y, ε, s}

First+(B→sz) = { s }

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bs

B → C

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bs

B → C

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

Answer

No. The First+ sets of B→C and B→ sz intersect (they
are not disjoint). This grammar is NOT LL(1).

© 2023 Arthur Hoskey. All
rights reserved.

C can disappear in this production because of C→ε.

Since the right side of this production can

disappear, we must include members of Follow(B)

in First+(B→C).

Note:First(C)={y, ε} and Follow(B)={s}.

First+(B→C) = First(C) + Follow(B) = {y, ε, s}

First+(B→sz) = {s}

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → C

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1)

Requirements for Parsing LL(1)

 Assume the following grammar.

A → Bw

B → C

B → sz

C → y

C → ε

Question

Are the First+ sets of the productions for B disjoint?

Answer

Yes. The First+ sets of B→C and B→ sz are disjoint.
This grammar is LL(1) because all productions for each
nonterminal have disjoint First+ sets.

© 2023 Arthur Hoskey. All
rights reserved.

Follow(B) is in First+(B→C) since C→ε.

Note: Follow(B)={w}.

First+(B→C) = First(C) + Follow(B) = {y, ε ,w}

First+(B→sz) = {s}

The C productions are also valid:

First+(C→y) = {y}

First+(C→ε) = {ε} + Follow(C) = {ε} + Follow(B) = {w, ε}

Transforming Grammars to LL(1)

Transforming Grammars to LL(1)

 You can try and transform a grammar to LL(1) using the
following techniques:
◦ Change to right recursive.

◦ Use left factoring

 Every context free grammar is not LL(1), so these
techniques are not guaranteed to work.

© 2023 Arthur Hoskey. All
rights reserved.

Predictive Parser

Predictive Parser

 A predictive parser is able to determine the correct
production to use given a small number of lookahead
symbols.

 The right recursive form of a grammar might work for
LL(1).

 Converting to right recursive form will allow you to use a
predictive parser.

 If a grammar is LL(1) then you can build a recursive
descent parser for it. Recursive descent parsing means
parsing from the start symbol down (top-down parsing).

© 2023 Arthur Hoskey. All
rights reserved.

Right Recursive Expression
Grammar

Convert the Expression Grammar to Right Recursive

 Original Expression Grammar (without the assignment)

Exp → Exp + Term | Exp – Term | Term

Term → Term * Fact | Term / Fact | Fact

Fact → id | num | (Exp)

 Right Recursive Expression Grammar

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

© 2023 Arthur Hoskey. All
rights reserved.

Right Recursive Grammar

 Now on to right recursive grammars…

© 2023 Arthur Hoskey. All
rights reserved.

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Exp

Start with Exp Exp→Term ExpEnd

Exp

Term ExpEnd

Term→Fact TermEnd

Exp

Term ExpEnd

Fact TermEnd

Parse Example

Part 1

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Fact→id

Exp

Term ExpEnd

Fact TermEnd

id

TermEnd→ ε

Exp

Term ExpEnd

Fact TermEnd

id ε

a a

Parse Example

Part 2

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

ExpEnd→ + Term ExpEnd

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Parse Example

Part 3

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Term→ Fact TermEnd

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

Parse Example

Part 4

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Fact→ num

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

num

2

Parse Example

Part 5

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

TermEnd→ * Fact TermEnd

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

num

2

* Fact TermEnd

Parse Example

Part 6

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

Fact→ id

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

num

2

* Fact TermEnd

id

b

Parse Example

Part 7

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

TermEnd→ ε

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

num

2

* Fact TermEnd

id

b

ε

Parse Example

Part 8

(continued on

next slide)

Right Recursive Grammar

 Productions (Exp is start symbol)

Exp → Term ExpEnd

ExpEnd → + Term ExpEnd | - Term ExpEnd | ε

Term → Fact TermEnd

TermEnd → * Fact TermEnd | / Fact TermEnd | ε

Fact → id | num | (Exp)

 Parse the following: a+2*b

© 2023 Arthur Hoskey. All
rights reserved.

ExpEnd→ ε

Exp

Term ExpEnd

Fact TermEnd

id ε

+ Term ExpEnd

a

Fact TermEnd

num

2

* Fact TermEnd

id

b

ε

ε

Parse Example

Part 9

FINISHED!

Left Factoring

 Now on to left factoring…

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1) -
Revisited

Requirement for Parsing LL(1) - Revisited

 Assume the following grammar.

A → cd

A → ce

A → cf

Question

Are the First+ sets of the productions for nonterminal A disjoint?

© 2023 Arthur Hoskey. All
rights reserved.

Requirements for Parsing LL(1) -
Revisited

Requirement for Parsing LL(1) - Revisited

 Assume the following grammar.

A → cd

A → ce

A → cf

Question

Are the First+ sets of the productions for nonterminal A disjoint?

Answer

No. They all contain c. This grammar is not LL(1).

We can transform these productions so that they are disjoint
though!

© 2023 Arthur Hoskey. All
rights reserved.

First+ sets are NOT disjoint (grammar is not LL(1))

First+(A→ cd) = {c}

First+(A→ce) = {c}

First+(A→cf) = {c}

Left Factoring Rule

Left Factoring Rule

 Assume the following grammar.

A → αβ1 | αβ2 |…| αβn | γ1 | γ2 |…| γn

 To left factor A move the symbols following α into new
productions.

 Grammar after left factoring.

A → αB | γ1 | γ2 |…| γn

B → β1 | β2 |…| βn

 Taken from Engineering a Compiler 2nd edition by Cooper and
Torczon, 2012.

© 2023 Arthur Hoskey. All
rights reserved.

α originally appeared in multiple A

productions but it has now been

factored out into one A production. The

γ productions in A remain unchanged

because they do not contain α.

Greek symbols:

α is alpha

β is beta

γ is gamma

Left Factoring

Left Factoring

 Assume the following grammar.

A → cd

A → ce

A → cf

Question

What does the grammar look like after left factoring nonterminal A's
productions?

© 2023 Arthur Hoskey. All
rights reserved.

Left Factoring

Left Factoring

 Assume the following grammar.

A → cd

A → ce

A → cf

Question

What does the grammar look like after left factoring nonterminal A's
productions?

Answer

A → cB

B → d

B → e

B → f

© 2023 Arthur Hoskey. All
rights reserved.

The First+ sets are

now disjoint

Leave c in production A and

move d, e, and f into the new B

productions

Left Factoring

Left Factoring

 Assume the following grammar.

A → cd

A → ce

A → x

A → y

Question

What does the grammar look like after left factoring nonterminal A's
productions?

© 2023 Arthur Hoskey. All
rights reserved.

Left Factoring

Left Factoring

 Assume the following grammar.

A → cd

A → ce

A → x

A → y

Question

What does the grammar look like after left factoring nonterminal A's
productions?

Answer

A → cB

A → x

A → y

B → d

B → e

© 2023 Arthur Hoskey. All
rights reserved.

When applying the left factoring rule:

c is α

d is β1

e is β2

x is γ1

y is γ2

Leave c in production A and

move d, e, and f into the new B

productions

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Parsing
	Slide 4: Syntactic Analysis
	Slide 5: Parser
	Slide 6: Parsing Tree Examples
	Slide 7: Parsing Example 1
	Slide 8: Parsing Example 1
	Slide 9: Parsing Example 1
	Slide 10: Parsing Example 1
	Slide 11: Parsing Example 1 - Observations
	Slide 12: Parsing Example 2
	Slide 13: Parsing Example 2
	Slide 14: Parsing Example 2
	Slide 15: Parsing Example 2
	Slide 16: Parsing Example 2 - Observations
	Slide 17: Grammar for Correct Expression Precedence
	Slide 18: Parsing Example 3
	Slide 19: Parsing Example 3
	Slide 20: Parsing Example 3
	Slide 21: Parsing Example 3
	Slide 22: Parsing Example 3
	Slide 23: Parsing Example 3 - Observations
	Slide 24: Add Parenthesis to the Expression Grammar
	Slide 25: Parsing Example 4
	Slide 26: Parsing Example 4
	Slide 27: Parsing Example 4
	Slide 28: Parsing Example 4
	Slide 29: Parsing Example 4
	Slide 30: Parsing Example 4
	Slide 31: Parsing Example 4
	Slide 32: Parsing Example 4
	Slide 33: Parsing Example 4
	Slide 34: Parsing Example 4 - Observations
	Slide 35: Left Recursion
	Slide 36: Left Recursive Grammar
	Slide 37: Left Recursive Grammar
	Slide 38: Right Recursion
	Slide 39: Right Recursive Grammar
	Slide 40: Right Recursive Grammar
	Slide 41: LL(1) Grammar
	Slide 42: LL(1)
	Slide 43: Requirements for Parsing LL(1)
	Slide 44: Requirements for Parsing LL(1)
	Slide 45: Requirements for Parsing LL(1)
	Slide 46: Requirements for Parsing LL(1)
	Slide 47: Requirements for Parsing LL(1)
	Slide 48: Requirements for Parsing LL(1)
	Slide 49: Requirements for Parsing LL(1)
	Slide 50: Requirements for Parsing LL(1)
	Slide 51: Requirements for Parsing LL(1)
	Slide 52: Requirements for Parsing LL(1)
	Slide 53: Transforming Grammars to LL(1)
	Slide 54: Predictive Parser
	Slide 55: Right Recursive Expression Grammar
	Slide 56: Right Recursive Grammar
	Slide 57: Right Recursive Grammar
	Slide 58: Right Recursive Grammar
	Slide 59: Right Recursive Grammar
	Slide 60: Right Recursive Grammar
	Slide 61: Right Recursive Grammar
	Slide 62: Right Recursive Grammar
	Slide 63: Right Recursive Grammar
	Slide 64: Right Recursive Grammar
	Slide 65: Right Recursive Grammar
	Slide 66: Right Recursive Grammar
	Slide 67: Left Factoring
	Slide 68: Requirements for Parsing LL(1) - Revisited
	Slide 69: Requirements for Parsing LL(1) - Revisited
	Slide 70: Left Factoring Rule
	Slide 71: Left Factoring
	Slide 72: Left Factoring
	Slide 73: Left Factoring
	Slide 74: Left Factoring
	Slide 75: End of Slides

